INTERNATIONAL CERTIFICATION PROGRAM CERTIFIED CLOUD Practice + Certified Data Engineering - Associate

INTERNATIONAL CERTIFICATION PROGRAM CERTIFIED CLOUD Practice + Certified Data Engineering - Associate

Módulos

Módulo I: Información general sobre los conceptos de la nube

  • Introducción a la informática en la nube
  • Ventajas de la nube
  • Introducción a AWS
  • Migración a la nube de AWS

  • Aspectos fundamentales de los precios
  • Costo total de propiedad
  • Calculadora de costo mensual
  • Caso práctico: Delaware North
  • AWS Organizations
  • AWS Billing and Cost Management
  • Panel de facturación
  • Modelos de soporte técnico

  • Infraestructura global de AWS
  • Servicios de AWS y categorías de servicios

  • Modelo de responsabilidad compartida de AWS
  • AWS IAM
  • Protección de una cuenta nueva de AWS
  • Protección de cuentas
  • Protección de datos
  • Cómo garantizar la conformidad

  • Conceptos básicos de las redes
  • Amazon VPC
  • Redes VPC
  • Seguridad de VPC
  • Route 53
  • CloudFront

  • Información general sobre los servicios de informática
  • Amazon EC2
  • Optimización de costos de Amazon EC2
  • Servicios de contenedores
  • Introducción a AWS Lambda
  • Introducción a AWS Elastic Beanstalk

  • Introducción
  • AWS EBS
  • AWS S3
  • AWS EFS
  • AWS S3 Glacier

  • Introducción
  • Amazon RDS
  • Amazon DynamoDB
  • Amazon Redshift
  • Amazon Aurora

  • Introducción
  • Principios de diseño del marco de buena arquitectura de AWS
  • Excelencia operativa
  • Seguridad
  • Fiabilidad
  • Eficiencia del rendimiento
  • Optimización de costos
  • Fiabilidad y alta disponibilidad
  • AWS Trusted Advisor

  • Introducción
  • Elastic Load Balancing
  • Amazon CloudWatch
  • Amazon EC2 Auto Scaling

AWS Academy Data Engineering

  • Requisitos previos y objetivos del curso
  • Resume

  • Decisiones basadas en datos
  • El canal de datos: infraestructura para decisiones basadas en datos
  • El papel del ingeniero de datos en las organizaciones basadas en datos

  • Las cinco V de los datos: volumen, velocidad, variedad, veracidad y valor
  • Volumen y velocidad
  • Variedad ? tipos de datos
  • Variedad ? fuentes de datos
  • Veracidad y valor
  • Actividades para mejorar la veracidad y el valor
  • Actividad: Planificación de su canalización
  • Verificación de conocimientos

  • Marco y lentes de buena arquitectura de AWS
  • Actividad: Uso del marco de buena arquitectura
  • La evolución de las arquitecturas de datos
  • Arquitectura de datos moderna en AWS
  • Canalización de arquitectura de datos moderna: ingesta y almacenamiento
  • Canalización de arquitectura de datos moderna: procesamiento y consumo
  • Canalización de análisis de streaming
  • Laboratorio: Consulta de datos mediante Athena
  • Verificación de conocimientos

  • Revisión de seguridad en la nube
  • Seguridad de las cargas de trabajo de análisis
  • Seguridad del aprendizaje automático
  • Escalado: descripción general
  • Crear una infraestructura escalable
  • Creación de componentes escalables
  • Verificación de conocimientos

  • Comparación de ETL y ELT
  • Introducción a la manipulación de datos
  • Descubrimiento de datos
  • Estructuración de datos
  • Limpieza de datos
  • Enriquecimiento de datos
  • Validación de datos
  • Publicación de datos
  • Verificación de conocimientos

  • Comparación de la ingesta de lotes y flujos
  • Procesamiento de ingesta por lotes
  • Herramientas de ingesta diseñadas específicamente
  • AWS Glue para procesamiento de ingesta por lotes
  • Consideraciones de escala para el procesamiento por lotes
  • Laboratorio: realización de ETL en un conjunto de datos mediante AWS Glue
  • Kinesis para procesamiento de flujos
  • Consideraciones de escala para el procesamiento de flujos
  • Ingesta de datos de IoT por flujo
  • Verificación de conocimiento

  • Almacenamiento en la arquitectura de datos moderna
  • Almacenamiento en lago de datos
  • Almacenamiento de datos
  • Bases de datos diseñadas específicamente
  • Almacenamiento en apoyo pipeline
  • Almacenamiento seguro
  • Laboratorio: Almacenamiento y análisis de datos mediante Amazon Redshift
  • Verificación de conocimientos

  • Conceptos de procesamiento de big data
  • Apache Hadoop
  • Apache chispa
  • Amazon EMR
  • Administrar sus clústeres de Amazon EMR
  • Laboratorio: procesamiento de registros mediante Amazon EMR
  • Apache Hudi
  • Laboratorio: Actualización de datos dinámicos in sitio
  • Verificación de conocimientos

  • Conceptos de ML
  • El ciclo de vida del ML
  • Enmarcar el problema del ML para alcanzar el objetivo empresarial
  • Recolectando datos
  • Aplicar etiquetas a datos de entrenamiento con objetivos conocidos
  • Actividad: Etiquetado con SageMaker Ground Truth
  • Preprocesamiento de datos
  • Ingeniería de características
  • Desarrollar un modelo
  • Implementación de un modelo
  • Infraestructura de aprendizaje automático en AWS
  • Creador de sabios
  • Demostración: preparación de datos y entrenamiento de un modelo con SageMaker
  • Demostración: preparación de datos y entrenamiento de un modelo con SageMaker Canvas
  • Servicios de IA/ML en AWS
  • Verificación de conocimientos

  • Considerar los factores que influyen en la selección de herramientas
  • Comparación de herramientas y servicios de AWS
  • Demostración: análisis y visualización de datos con AWS IoT Analytics y QuickSight
  • Selección de herramientas para un caso de uso de análisis de juegos
  • Laboratorio: Análisis y visualización de datos en streaming con Kinesis Data Firehose, OpenSearch Service y paneles de OpenSearch
  • Verificación de conocimientos

  • Automatización de la implementación de infraestructura
  • CI/CD
  • Automatización con funciones escalonadas
  • Laboratorio: Creación y orquestación de canalizaciones ETL mediante el uso de Athena y funciones de paso
  • Verificación de conocimientos

Descripción general de la certificación AWS

This certification program combines two levels of training at Amazon Web Services (AWS):

  • AWS CERTIFIED Cloud Practitioner (CLF-C02): Introduction to the fundamental concepts of cloud computing, AWS global infrastructure and billing models
  • AWS Certified Data Engineering - Associate (DEA -C01): Design, implementation and optimization of Data pipes on AWS for Big Data, Machine Learning and advanced analysis environments
  • Under the practical Learning Method approach, participants will receive a cloud entrance pack to apply the concepts through workshops, laboratories and projects in real environments, applying concepts from the introduction to the cloud to the advanced data management in AWS
  • At the end, they will be prepared to perform as Cloud Engineer, Data Engineer or Big Data Specialist, in addition to approving both certification exams

At the end of the course, participants will be able to:

  • Understand AWS infrastructure, its main services and its price philosophy
  • Implement safety and compliance measures on AWS, including IAM and data encryption
  • Design and implement scalable data pipes on AWS, optimizing intake, processing and storage
  • Configure and manage Databases on AWS, including Amazon RDS, Dynamodb and Redshift
  • Automatize ETL processes in AWS, using AWS GUE, Step Functions and Lambda
  • Optimize cloud architectures, ensuring high availability and cost efficiency
  • Monitor and analyze data in real time, using kinesis, athena and quicksight
  • Prepare for AWS CERTIFIED CLOUD CERTIFICATIONS Practitioner and AWS Certified Data Engineering - Associate, ensuring the mastery of the issues evaluated

To participate in this training, attendees must meet the following requirements:

  • Basic technical knowledge in information technologies.
  • Familiarity with databases and SQL language.
  • Prior experience in AWS is not required, but it is recommended to have knowledge in IT infrastructure.

These requirements ensure that participants can focus on the practical application of the concepts, from the foundations to the analysis of cloud data.

INTERNATIONAL CERTIFICATION PROGRAM CERTIFIED CLOUD Practice + Certified Data Engineering - Associate Applies
INTERNATIONAL CERTIFICATION PROGRAM CERTIFIED CLOUD Practice + Certified Data Engineering - Associate 70 hours

Learning Methodology

The learning methodology, regardless of the modality (in-person or remote), is based on the development of workshops or labs that lead to the construction of a project, emulating real activities in a company.

The instructor (live), a professional with extensive experience in work environments related to the topics covered, acts as a workshop leader, guiding students' practice through knowledge transfer processes, applying the concepts of the proposed syllabus to the project.

The methodology seeks that the student does not memorize, but rather understands the concepts and how they are applied in a work environment.

As a result of this work, at the end of the training the student will have gained real experience, will be prepared for work and to pass an interview, a technical test, and/or achieve higher scores on international certification exams.

Conditions to guarantee successful results:
  • a. An institution that requires the application of the model through organization, logistics, and strict control over the activities to be carried out by the participants in each training session.
  • b. An instructor located anywhere in the world, who has the required in-depth knowledge, expertise, experience, and outstanding values, ensuring a very high-level knowledge transfer.
  • c. A committed student, with the space, time, and attention required by the training process, and the willingness to focus on understanding how concepts are applied in a work environment, and not memorizing concepts just to take an exam.

Pre-enrollment

You do not need to pay to pre-enroll. By pre-enrolling, you reserve a spot in the group for this course or program. Our team will contact you to complete your enrollment.

Pre-enroll now

Infinity Payments

Make your payment quickly, safely and reliably


- For bank transfer payments, request the details by email capacita@aulamatriz.edu.co.

- If you wish to finance your payment through our credit options
(Sufi, Cooperativa Unimos or Fincomercio), click on the following link:
Ver opciones de crédito.

To continue you must

Or if you don't have an account you must

Description

This certification program combines two levels of training at Amazon Web Services (AWS):

  • AWS CERTIFIED Cloud Practitioner (CLF-C02): Introduction to the fundamental concepts of cloud computing, AWS global infrastructure and billing models
  • AWS Certified Data Engineering - Associate (DEA -C01): Design, implementation and optimization of Data pipes on AWS for Big Data, Machine Learning and advanced analysis environments
  • Under the practical Learning Method approach, participants will receive a cloud entrance pack to apply the concepts through workshops, laboratories and projects in real environments, applying concepts from the introduction to the cloud to the advanced data management in AWS
  • At the end, they will be prepared to perform as Cloud Engineer, Data Engineer or Big Data Specialist, in addition to approving both certification exams

Objectives

At the end of the course, participants will be able to:

  • Understand AWS infrastructure, its main services and its price philosophy
  • Implement safety and compliance measures on AWS, including IAM and data encryption
  • Design and implement scalable data pipes on AWS, optimizing intake, processing and storage
  • Configure and manage Databases on AWS, including Amazon RDS, Dynamodb and Redshift
  • Automatize ETL processes in AWS, using AWS GUE, Step Functions and Lambda
  • Optimize cloud architectures, ensuring high availability and cost efficiency
  • Monitor and analyze data in real time, using kinesis, athena and quicksight
  • Prepare for AWS CERTIFIED CLOUD CERTIFICATIONS Practitioner and AWS Certified Data Engineering - Associate, ensuring the mastery of the issues evaluated

To participate in this training, attendees must meet the following requirements:

  • Basic technical knowledge in information technologies.
  • Familiarity with databases and SQL language.
  • Prior experience in AWS is not required, but it is recommended to have knowledge in IT infrastructure.

These requirements ensure that participants can focus on the practical application of the concepts, from the foundations to the analysis of cloud data.

offers

INTERNATIONAL CERTIFICATION PROGRAM CERTIFIED CLOUD Practice + Certified Data Engineering - Associate Applies
INTERNATIONAL CERTIFICATION PROGRAM CERTIFIED CLOUD Practice + Certified Data Engineering - Associate 70 hours

Learning Methodology

The learning methodology, regardless of the modality (in-person or remote), is based on the development of workshops or labs that lead to the construction of a project, emulating real activities in a company.

The instructor (live), a professional with extensive experience in work environments related to the topics covered, acts as a workshop leader, guiding students' practice through knowledge transfer processes, applying the concepts of the proposed syllabus to the project.

The methodology seeks that the student does not memorize, but rather understands the concepts and how they are applied in a work environment.

As a result of this work, at the end of the training the student will have gained real experience, will be prepared for work and to pass an interview, a technical test, and/or achieve higher scores on international certification exams.

Conditions to guarantee successful results:
  • a. An institution that requires the application of the model through organization, logistics, and strict control over the activities to be carried out by the participants in each training session.
  • b. An instructor located anywhere in the world, who has the required in-depth knowledge, expertise, experience, and outstanding values, ensuring a very high-level knowledge transfer.
  • c. A committed student, with the space, time, and attention required by the training process, and the willingness to focus on understanding how concepts are applied in a work environment, and not memorizing concepts just to take an exam.

Pre-enrollment

You do not need to pay to pre-enroll. By pre-enrolling, you reserve a spot in the group for this course or program. Our team will contact you to complete your enrollment.

Download Syllabus